HOME
ABOUT THE JOURNAL
Aims and Scope
Editorial Board
Editor's choices & News
AUTHOR GUIDE
Submission Instruction
Open Access Policy
CONTACT
Atmos. Oceanic Sci. Lett.
Current Issue
|
Next Issue
|
Archive
|
Adv Search
|
A spatiotemporal 3D convolutional neural network model for ENSO predictions: A test case for the 2020/21 La Niña conditions
Lu Zhou, Chuan Gao, Rong-Hua Zhang
Abstract
Figure/Table
References(0)
Related Citation (15)
Download:
PDF
(0 KB)
Export:
BibTeX
|
EndNote
(RIS)
Accepted:
25 January 2023
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Lu Zhou
Chuan Gao
Rong-Hua Zhang
Cite this article:
Lu Zhou, Chuan Gao, Rong-Hua Zhang, 2023: A spatiotemporal 3D convolutional neural network model for ENSO predictions: A test case for the 2020/21 La Niña conditions .
Atmos. Oceanic Sci. Lett.
,
16
(4), 100330-, doi: .
URL:
http://aosl.iapjournals.ac.cn/EN/
OR
http://aosl.iapjournals.ac.cn/EN/Y2023/V16/I4/100330
[1]
Jian Song, Ning Shi, Qilei Huang.
Precursory atmospheric teleconnection patterns for strong Siberian High events
[J]. Atmos. Oceanic Sci. Lett., 2023, 16(5): 100376-.